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Motivation

I How does the choice of the finite element discretization affect
the solution of PDE–constrained optimization problems arising
in the control and design of semiconductor devices?

I collaboration with the Charon project (Sandia National Labs):
modeling of electrical semiconductor devices at high fidelities;
in addition to simulation, Charon enables the solution of related
parameter estimation, optimal design, and inverse problems

SOURCE DRAINGATE

n+ n+

n

Doping Profile

Example Problems:

I increase the current flow over a contact by tweaking the doping profile

I determine the doping profile based on a profile measurement and the
corresponding (experimental) current data
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Problem Statement

minimize J =
1
2
‖J(x) · ν − Ĵ(x) · ν‖2

−1/2,Γo
+

α

2
‖(u(x)− û(x)‖2

0,Ω

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x),


DRIFT–DIFFUSION

where y is the electrostatic potential, n and p are electron and hole
densities, u is the doping profile, µn and µp are electron and hole
mobilities, k is the permittivity, and the total current density is given by

J(x) = Jn(x) + Jp(x).
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Survey

Discretization of the Drift–Diffusion Equations
I primal Galerkin FE schemes with streamline or flux upwinding

(SUPG – Hughes, Brooks; FUPG – Carey, Sharma)
I mixed and hybrid FE methods with exponential fitting

(Brezzi, Marini, Pietra; Holst, Jüngel, Pietra)
I exponentially fitted triangular and tetrahedral FE methods

(Wang, Miller, Angermann)

I finite volume / covolume methods, e.g. the box method with
Scharfetter–Gummel upwinding (McCartin, Bank et al., Mock)
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Survey

Discretization of the Drift–Diffusion Equations
I primal Galerkin FE schemes with streamline or flux upwinding

(SUPG – Hughes, Brooks; FUPG – Carey, Sharma)
I mixed and hybrid FE methods with exponential fitting

(Brezzi, Marini, Pietra; Holst, Jüngel, Pietra)
I exponentially fitted triangular and tetrahedral FE methods

(Wang, Miller, Angermann)

I finite volume / covolume methods, e.g. the box method with
Scharfetter–Gummel upwinding (McCartin, Bank et al., Mock)

Optimization
I while the discretization of the D–D equations is fairly well studied,

there are virtually no studies on the impact of the discretization on
the solution of the PDE–constrained optimization problem

I one example: study of the SUPG method in discretize-then-optimize
vs. optimize-then-discretize (Collis and Heinkenschloss)

I numerical study of Galerkin versus mixed Galerkin discretizations
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Simplified Model Problem

minimize J =
1
2
‖J(x) · ν − Ĵ(x) · ν‖2

−1/2,Γo
+

α

2
‖(u(x)− û(x)‖2

0,Ω

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x)
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Simplified Model Problem

minimize J =
1
2
‖∇y(x) · ν −∇ŷ(x) · ν‖2

−1/2,Γo
+

α

2
‖(u(x)− û(x)‖2

0,Ω

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x)

J → ∇y
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Simplified Model Problem

minimize J =
1
2
‖∇y(x) · ν −∇ŷ(x) · ν‖2

−1/2,Γo
+

α

2
‖(u(x)− û(x)‖2

0,Ω

subject to

−∇ · (k(x)∇y(x)) = f(x) + u(x) in Ω
y(x) = yD(x) on ΓD

(k(x)∇y(x)) · ν = g(x) on ΓN

ΓN

ΓN

ΓN

Γo ΓDΓD
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Galerkin Discretization

I state and control spaces

Y =
˘
y ∈ H1(Ω) : y = yD on ΓD

¯
, U = L2(Ω)

I test function space

V =
˘
v ∈ H1(Ω) : v = 0 on ΓD

¯
I (bi)linear forms

a(y, v) =

Z
Ω
k∇y · ∇v dx, b(u, v) = −

Z
Ω
uv dx,

〈f, v〉 =

Z
Ω
fv dx, 〈g, v〉ΓN

=

Z
ΓN

gv dx

I Weak form: Find y ∈ Y, u ∈ U , which solve, for all v ∈ V

minimize
1
2
‖∇y(x) · ν −∇ŷ(x) · ν‖2

−1/2,Γo
+

α

2
‖(u(x)− û(x)‖2

0,Ω

subject to
a(y, v) + b(u, v) = 〈f, v〉+ 〈g, v〉ΓN

.
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Galerkin Discretization
Flux Term: ‖∇y(x) · ν −∇by(x) · ν‖2−1/2,Γo

I Standard approach. Restrict the states to a finite element
subspace Yh, compute terms ∇yh · ν directly, and use a weighted L2

norm to approximate the norm on H−1/2(Γo):

‖∇y · ν −∇ŷ · ν‖2
−1/2,Γo

≈ h‖∇yh · ν −∇ŷh · ν‖2
0,Γo

I Better choice: Variational Flux Approximation (VFA).
Replace flux ∇yh · ν by a more accurate, C0 approximation λh,
obtained by solving the equation∫

Γ0

λhvh dl = k−1

(
a(yh, vh) + b(uh, vh)− (f, vh)−

∫
Γ\Γo

k∇yh · νvh dl

)

then approximate the flux term as follows:

‖∇y · ν −∇ŷ · ν‖2
−1/2,Γo

≈ h‖λh − λ̂h‖2
0,Γo
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Galerkin Discretization
Variational Flux Approximation

∫
Γ0

λhvh dl = k−1

(
a(yh, vh) + b(uh, vh)− (f, vh)−

∫
Γ\Γo

k∇yh · νvh dl

)

I PDEs: Wheeler, Babuška, Brezzi, Hughes, etc.
When used to postprocess a given finite element solution (yh, uh),
the right hand side above involves only known quantities.

I Optimal control (to date): Berggren, et al. (Thanks!)
VFA is used in an already defined optimality system to improve the
accuracy of the solution.

I Our case, NEW use of VFA:
VFA changes the optimization problem, because the discretization

‖∇y · ν −∇ŷ · ν‖2
−1/2,Γo

≈ h‖λh − λ̂h‖2
0,Γo

,

where λh is given above, is a function of both the unknown states
yh and the unknown controls uh!
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Mixed Galerkin Discretization

I consider the Poisson equation as a first–order system:
Given u ∈ L2(Ω), f ∈ L2(Ω), g ∈ L2(ΓN ), and yd ∈ H1(Ω)∩C(Ω),
seek y ∈ L2(Ω) and p ∈

[
L2(Ω)

]2
, with ∇ · p ∈ L2(Ω), satisfying

∇ · p + u = −f in Ω

k−1 p−∇y = 0 in Ω
y = yD on ΓD

(k∇y) · ν = g on ΓN .

I for the weak form, we introduce the spaces

H(div,Ω) =
{

q ∈
[
L2(Ω)

]2
: ∇ · q ∈ L2(Ω)

}
,

H0,N (div,Ω) =
{

q ∈ H(div,Ω) : q · ν = 0 on ΓN

}
,

Hg,N (div,Ω) =
{

q ∈ H(div,Ω) : (k q) · ν = g on ΓN

}
.
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Mixed Galerkin Discretization
I state spaces Y = L2(Ω) and P = Hg,N (div,Ω)

I control space U = L2(Ω)

I test function spaces V = L2(Ω) and Q = H0,N (div,Ω)

I (bi)linear forms

a(p, q) =

Z
Ω

1

k
p · q dx, b(q, y) =

Z
Ω

(∇ · q)y dx, c(u, v) =

Z
Ω
uv dx,

〈f, v〉 =

Z
Ω
fv dx, 〈yd, q · ν〉ΓD

=

Z
ΓD

yD q · ν dx

I Weak form: Find (y, p) ∈ Y × P , and u ∈ U , which solve, for all
q ∈ Q and all v ∈ V , the problem

minimize
1
2
‖k−2(p · ν − p̂ · ν)‖2

−1/2,Γo
+

α

2
‖u− û‖2

0,Ω

subject to

a(p, q) + b(q, y) = 〈yd, q · ν〉ΓD

b(p, v) + c(u, v) = −〈f, v〉 .
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Mixed Galerkin Discretization
Flux Term: ‖k−2(p · ν − bp · ν)‖2−1/2,Γo

I Direct approximation. The flux is approximated directly by ph:

‖k−2(p · ν − p̂ · ν)‖2
−1/2,Γo

≈ h‖k−2(ph · ν − p̂h · ν)‖2
0,Γo

.

I A more natural, “compatible” flux approximation!
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Preliminary Comparison

minimize
1

2
‖J(x) · ν − bJ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x) − bu(x)‖20,Ω

subject to

−∇ · (k(x)∇y(x)) = f(x) + u(x) in Ω

y(x) = yD(x) on ΓD

(k(x)∇y(x)) · ν = g(x) on ΓN

GALERKINR
Γo

∇ϕi · ν ∇ϕj · ν dx
ϕi,j nodal basis functions VFA

∇ϕ · ν =?

	 STD: innacurate flux computations
	 VFA: cumbersome implementation!

a(y, v) + b(u, v) = 〈f, v〉 + 〈g, v〉ΓN

⊕ less expensive solution of the PDE

MIXED GALERKINR
Γo
k−2 ψi · ν ψj · ν dx

ψi,j “face” basis functions

⊕ more natural choice for flux objectives

a(p, q) + b(q, y) = 〈yd, q · ν〉ΓD

b(p, v) + c(u, v) = −〈f, v〉
	 more expensive solution of the PDE
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Experimental Setup

ΓN

ΓN

ΓN

Γo ΓDΓD

I Galerkin: first–order nodal elements (P1)

I Mixed: lowest–order Raviart–Thomas elements (RT0)

I 32 × 32 × 2 triangular mesh

I forcing term f(x) = 0, yD = 0 on ΓD

I target doping bu = 1, reg. param. α = 6.25 · 10−4

I g = 0 on left, right ΓN ; g(x) = −k(x) on bottom ΓN

I parameter study: (a) diffusivity profile k
(b) target flux ∇by · ν

k = 102 k = 10−2

k
=

1
0

k
=

1
0

k
=

1
0
−

2
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Experimental Setup ... cont’d

Example 1. The desired flux is ∇ŷ · ν = 1 and k(x) = 102 in Ω.

Example 2. The desired flux is ∇ŷ · ν = 1 and k(x) = 10−2 in Ω.

Example 3. The desired flux is ∇ŷ · ν = 1 and

k(x) =


10 in [−1,−0.25]× [−1, 1]
10−2 in [−0.25, 0.25]× [−1, 1]
10 in [0.25, 1]× [−1, 1],

Example 4. The desired flux is ∇ŷ · ν = 100 and k(x) is as in Ex. 3.
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Objective Functional

Example 1: k(x) = 102 Example 2: k(x) = 10−2

GM Mixed GM-VFA GM Mixed GM-VFA

JF 1.99e-06 1.88e-06 1.95e-04 6.42e-09 2.51e-09 2.70e-09

Ju 1.10e-08 1.10e-08 3.81e-07 1.12e-03 1.08e-03 1.11e-03

J 2.00e-06 1.89e-06 1.95e-04 1.12e-03 1.08e-03 1.11e-03

Example 3: k(x) discontinuous Example 4: k(x) disocntinuous

GM Mixed GM-VFA GM Mixed GM-VFA

JF 6.07e-05 8.10e-10 2.83e-07 1.06e+01 2.56e-07 6.29e-07

Ju 7.17e-05 4.62e-05 4.50e-03 3.63e+00 4.57e-03 7.19e-03

J 1.32e-04 4.62e-05 4.50e-03 1.42e+01 4.57e-03 7.19e-03

Table: JF , Ju and J denote the values of the flux term, the control term and
their sum (the total value of the objective functional).
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Example 3
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Figure: Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row)
and optimal controls (bottom row) for Example 3.
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Example 4
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Figure: Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row)
and optimal controls (bottom row) for Example 4.
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Summary & Conclusion

I performed study of Galerkin and mixed Galerkin discretizations used for
the numerical solution of PDE–constrained optimization problems with
applications to semiconductor design

I unique problem feature: objective functionals involve flux terms, which
have fundamentally different discrete representations depending on the
type of FE discretization

I for problems with heterogeneous material properties the mixed Galerkin
method offers the most robust performance and the most accurate results

I the worst performer is the standard Galerkin method (not recommended!),
which may yield state and control approximations that are many orders of
magnitude less accurate than those computed by the mixed method

I if, for whatever reason, the use of the mixed method is not feasible, then

the Galerkin discretization of the state equations should be combined with

the VFA approach in order to improve robustness and accuracy
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